
Solvi: a Visual Constraint Modeling Tool

Xu Zhua, Miguel A Nacentab, Özgür Akgüna, Daniel Zenkovitchb

aSchool of Computer Science, University of St Andrews, St Andrews, Fife, United
Kingdom

bDepartment of Computer Science, University of Victoria, Victoria, British
Columbia, Canada

Abstract

Discrete constraint problems surface often in everyday life. Teachers
might group students with complex considerations and hospital adminis-
trators need to produce sta↵ rosters. Constraint programming (CP) pro-
vides techniques to e�ciently find solutions. However, there remains a key
challenge: these techniques are still largely inaccessible because expressing
constraint problems requires sophisticated programming and logic skills. In
this work we contribute a language and tool that leverage knowledge of how
non-experts conceptualize problems to facilitate the expression of constraint
models. Additionally, we report the results of a study surveying the advan-
tages and remaining challenges towards making CP accessible to the wider
public.

Keywords: constraints programming, visualization, visual modelling, visual
language, human computer interaction

1. Introduction

In professional and personal life, people are often faced with what math-
ematicians and computer scientists call constraint problems : problems in
which the solution involves a set of states of objects that satisfy certain con-
ditions (the constraints). For example, when a teacher assigns students to
project groups, the teacher might want to enforce certain group constraints,

Email addresses: xz32@st-andrews.ac.uk (Xu Zhu), nacenta@uvic.ca (Miguel A

Nacenta), ozgur.akgun@st-andrews.ac.uk (Özgür Akgün),

danielzenkovitch@uvic.ca (Daniel Zenkovitch)

Preprint submitted to Journal of Computer Languages

such as each group having at least one extrovert, and global constraints such
as all groups having students from multiple sexes. Other examples include
assigning tasks to di↵erent members of a team, building a family schedule,
nurse rostering in hospitals, or planning a wedding seating arrangement.

Researchers in the research communities of constraint solving, constraint
satisfaction problems, operations research and others have devoted much
time and resources to develop theories, methods and software that e�ciently
help find solutions for constraint problems (e.g., [1, 2]). Existing program-
ming languages and constraint solvers allow their users to express problems
as problem models and, for a large number of those problems, e�ciently find
a number of solutions, or show that no solution complies with all the con-
straints.

We believe that the research areas of visual languages, visual representa-
tion (including Information Visualization) and HCI/interface design can con-
tribute new approaches to creating more accessible constraint problem speci-
fication. Visual languages seem particularly fitting to represent CP problems
because these involve many objects that have complex relationships between
them (constraints) and, unlike textual constraint programming languages,
naturally provide a diagrammatic overview of the problems and might re-
quire less specialized skills to read and write. Additionally, visual languages
might enable expression of problems in ways closer to how people naturally
describe this type of problems [3, 4, 5].

The main goal of this paper is to explore a novel alternative to express
constraint models that will be more accessible. We aim at extending the
target audience as much as possible, but recognize that proficient users of
constraint programming languages are unlikely to need or prefer such sys-
tem. On the other end of the spectrum, some novel users might not be able
to express any model if they lack the basic logical or mathematical concepts.
Thus, our secondary goal is to assess to what extent non-experts in con-
straint programming languages can e↵ectively express constraint problems
when supported by a language and interface design for this purpose.

Building upon previous work on how people naturally describe constraint
problems [5, 4], we designed the first visual language for constraint prob-
lem specification and implemented a novel prototype tool that uses this lan-
guage while applying several UI design innovations. The tool, which we call
Solvi, enables people to create visual descriptions of constraint problems,
supports them checking that the model expresses what they wanted to ex-
press (through an alternative natural language representation), translates the

2

models to a state-of-the-art CP language, sends it to a solver, and visualizes
the solutions. We also contribute a study that assesses the e↵ectiveness of
the tool and, perhaps more importantly, identifies which concepts are more
challenging for non-expert users.

2. Example Problem

We now provide an example scenario where a constraint problem needs a
solution. It serves as a running example throughout the rest of the paper to
introduce Solvi’s design. We selected this scenario according to three criteria:
it must allow us to demonstrate most of the features of the language and
give an indication of its expressive power, it has to be simple and familiar
enough to be readily understandable for the reader, and it must be a plausible
representative of a real task. Some readers might object that the example
below can be reasonably solved by hand in a time comparable to what it
would take to express the model. Although this is tenable, consider that
the human e↵ort and time required grow fast with increasing quantities of
elements and constraints, that tasks would often require successive small fixes
that might force the human solving process to start from scratch, and that
humans can easily miss very advantageous solutions when they take shortcuts
in the name of tractability and timeliness.

Taylor is a teacher at a high school who is planning a project for
the students on a class. Taylor’s class has 21 students, some of
which are new to the school, with a range of previous grades that
are presumed to somewhat reflect their academic skills. Taylor
wants to create 5 teams of three to five students but also wants to
make sure that new students can benefit from the experience of
other students at the school (and have the opportunity to connect
with the existing social fabric). Taylor ensures this by having at
least one older student in each team. Finally, the assignment
should take into account that students Idris and Ally had a con-
flict in the past and the school advisor has recommended that
they do not sit together in a team.

What kind of team assignments are possible? Can Taylor also balance
out the average grade in the teams so that all teams have similarly strong
chances at a good grade?

3

3. Background and Related Work

This section provides the necessary background regarding constraint pro-
gramming (CP), problem modeling and existing systems for visual program-
ming and visualization in CP.

A constraint satisfaction problem is a problem that can be expressed
through decision variables and a set of constraints. Each decision variable has
an associated domain encoding the potential values it can take. A constraint
is a condition on a subset of the variables that limits the values they are al-
lowed to take. Constraint Programming (CP) [6] is a declarative method for
stating and solving constraint satisfaction problems. CP is successfully ap-
plied in many high-impact areas such as timetabling, sta↵ rostering, logistics,
production planning and experiment design [7, 8].

The process of applying CP to a problem can be crudely divided into two
parts: modeling and solving. Once a problem is modeled into a suitable lan-
guage, it can be automatically solved using a constraint solver. For complex
real life problems, the modeling step presents a real di�culty: capturing a
correct and e�cient model is hard, even for experts. High-level modeling
languages like Essence [9, 10] and Zinc [11] reduce the need for this expertise
somewhat through abstract domain types like sets, functions, and relations.

This paper is the first on the topic of supporting the CP modeling process
through visual means and visualization. The existing constraint visualization
systems focus on debugging or for understanding the progress of the solving
process, mainly through visualizing the search-tree and result set. Existing
systems allow the user to create a visualization for a specific problem by visu-
alizing the underlying constraint network directly [12], or by creating vector
images and writing code to link the images to the model [13], and sometimes
add a time dimension to allow visualizing the progress over time [14, 15].
In contrast, other systems allow creating a search-tree based visualization
in a model-independent way [16, 17]. There is also preliminary research to
understand user expectations for search-tree based visualizations [5, 18].

Existing research recognizes problem representation as one of the key
elements or stages for solving a problem. Scientists often propose notations
as a way to advance their fields [19, 20]. Writing and sketching are often seen
to be a natural extension of internal mental processes and help to augment
human memory and processing capacity [21] and have a significant role in the
visualization and understanding of data [22, 23]. The role of representation
has been studied in educational contexts [24], for understanding how people

4

build models of working systems [25], and for problem modeling, sketching
and visualization of large datasets [26].

Visual programming languages primarily aim to make programming ac-
cessible to broader audiences by managing the complexity of specifying sys-
tems that are highly interconnected [27, 28, 29]12. Scratch is a prominent
example that uses drag and drop blocks to specify a program instead of
writing code [30]. These visual programming languages are typically for pro-
cedural languages rather than declarative and are not free from their own
limitations such as scalability [31] and clutter [32]. Theoretical aspects of
the design, parsing and specification of visual programming languages are
extensively discussed by Marriott and Meyer [33].

A related technique that aims to make the CP modeling process easier
is programming by example, where a model is synthesized using examples of
correct and incorrect solutions to a particular problem [34, 35, 36, 37]. These
systems do not require their users to have any knowledge of CP modeling,
however the correctness of a synthesized model is di�cult to check and often
impossible to prove. For complex problems, the number of required examples
can be extremely large.

4. Design Goals and Principles

We designed Solvi with the overarching goal of making constraint solving
technology more accessible for personal and professional problem solving. We
further make the overarching goal more explicit through four main objectives.
The design of Solvi aims at:

O1 Enabling modeling and communication of a range of constraint prob-
lems that is as broad as possible, for a broad range of people.

O2 Solving and representing solutions to the modeled problem e↵ectively.

O3 Supporting situated use in locations beyond programming stations (i.e.,
computers that require at least semi-dedicated spaces).

O4 General comfort, learnability and ease of use.

1
https://cycling74.com/products/max/

2
https://www.mathworks.com/products/simulink.html

5

https://cycling74.com/products/max/
https://www.mathworks.com/products/simulink.html

To accomplish those objectives, we selected a design approach based on
six key design principles:

DP1. Visual Representations. Many have posited that visual representations
are key facilitators of understanding and communication (e.g. [38, 39]), which
aligns also with O2; additionally, visual languages are a common approach to
address formalization by non-programmers ([40, 32], supports O1). Finally,
Zhu et al. found that most people asked to express constraint problems
can e↵ectively use graphical representations to a large extent, although not
exclusively [4].

DP2. Flexible composability. To achieve the expressiveness of O1 we require
substantial flexibility, which is usually o↵ered by a language that enables a
limited number of elements (tokens) to be used multiple times and combined
in multiple di↵erent ways. We followed an atomic approach similar to that
reported by Méndez et al. [29, 41], itself based on educational constructivist
and constructionist philosophies [42, 43].

DP3. Underspecified to specified. Problem understanding by people is pro-
gressive, and partially facilitated by the externalization of the problem model
itself (e.g., [44]). It seems reasonable to support a journey in which the prob-
lem holder interacts with the software gradually to build the formalization
of their problem at the same time that they build their understanding of the
problem. We therefore have to assume that the problem starts being under-
specified and gets gradually refined through interaction with the system as
part of the interaction loop.

DP4. Multiple Notations. Zhu et al. [4] observed that, although graphical
representations are useful for people to express problems, di↵erent groups
of people rely also on more textual notations. A multi-notational approach
that uses a visual language in combination with textual representations might
better support a broader range of users (O1) as well as provide alternative
feedback that assures the problem holder that their model is consistent with
their problem (O2,O4).

DP5. Graphical Freedom. Previous research in other domains suggests that
the arrangement and appearance of elements in computerized representations
is important for people to preserve their mental map and to e↵ectively locate
and recognize these elements (e.g., [45]) which, in turn, would a↵ect O4.

6

Rather than constrain the arrangement and appearance of items represented
in the problem, we aim to support a degree of graphical freedom, especially
encouraging familiarity of the representation to allow people to relate to
their prior experiences. Zhu et al. [4] also found that people also use sketches
or shorthand symbols (e.g., happy or sad smileys) to represent elements in
constraint problems, perhaps for these reasons.

DP6. Bottom-up and Top-down. Problem specification by humans some-
times takes place in a bottom-up way (e.g., starting with examples and then
generalizing to more abstract properties), and sometimes top to bottom (e.g.,
specification of the structure of the problem first, followed by providing the
specifics, or data). Supporting both approaches to the extent possible is
consistent with O4, DP3 and avoids Blackwell and Green’s premature com-
mitment issue [46].

These design principles represent the best knowledge available to us for
the design of Solvi, and justify the main design choices described in Section 5.
Naturally, many other approaches are possible.

5. Solvi: Design

Solvi is both the visual constraint modeling visual language and the web
interface that implements it. In this Section, we use the example from Sec-
tion 2 to introduce the main elements of Solvi and how they work together
to model constraint problems. We reference to items in Section 4 when the
design of a feature has been motivated directly by an objective or principle
(e.g., O1, DP3). We use small caps to introduce the names of features in
the interface and italics to refer to constructs of the Solvi language.

5.1. General Structure

Solvi supports interaction both through touch and through cursor to en-
able interaction from tablets and from PCs/Laptops (i.e., it is designed to
support situated use— Design Goal O3). The main interface has four key
panes (Figure 1.A to D) that we will discuss in their own subsections below.

Visual representations can be screen real estate-hungry. To enable cross-
notation interaction (DP4) and avoid having to rely too much on memory
(part of O4), a Pane Adjustment Handle (Figure 1.E) allows modelers to
quickly change the proportion of the screen devoted to each pane by simply
dragging the panes’ cross point. We anticipated that this would also better

7

support di↵erent stages of the process (i.e., more space on the visual modeling
pane at the beginning, and larger area for the solutions at the end—see also
the Video Figure3).

A Command Wheel contains the di↵erent modes of interaction (e.g.,
drawing, solving) as well as di↵erent operators (e.g. equals, minimise, min,
etc.) that can be added to the panes. The drawing mode creates the object,
which can then be modified to become other types of items. The other modes,
when selected, allow placing the di↵erent operators on the canvas. The wheel
rotates to reveal the di↵erent available modes, operators, and tools. The list
of modes is fixed and cannot be defined by the user. The wheel is designed so
that the thumb can rest in its middle when used without a table or support
(O3), and so that it can still be scrolled and elements selected by shifting the
hold position of the thumb (O4). This is intended to free up the other hand
for other interactions such as placing new objects on the panes. Alternatively,
one can switch palette to use a more traditional toolbar as well, especially
when using a mouse.

3
https://solvi.org.uk/Solvi.mp4

8

https://solvi.org.uk/Solvi.mp4

Figure 1: Main structure of Solvi interface and top-level interface elements.

9

5.2. Visual Modeling Pane and Solvi Visual Language

The top left pane of Solvi (Figure 1.A) is an infinite canvas where the
user builds the graphical model of the problem using the Solvi visual lan-
guage. The main operations on the canvas are to create new items, to edit or
delete existing items and to connect items. Since the operation of the can-
vas is tightly interwoven with the design of the visual language, we describe
both simultaneously through the scenario where Taylor starts modeling the
problem from Section 2.

One key element of Taylor’s problem are the students themselves. To
represent a student, Taylor uses the command wheel in the Sketch Mode
(Figure 2.A) and makes a quick sketch in the shape of a person, and adds
some spiky hair, which is one of student Ally’s trademarks (sketching the
appearance of the object supports DP5). That creates a widget representing
an object, which can be given a specific name (e.g., Ally—Figure 2.B). Then,
by tapping the plus button at the bottom of the widget and renaming the
placeholder text, Taylor creates some attributes relevant to the problem, such
as their grade, and whether they are new or not (Figure 2.C). For Ally, those
values can then be directly edited by creating a value and connecting it to
the left port of the corresponding attribute (Figure 2.D).

10

Figure 2: The visual specification of the example problem in the visual pane. Refer to the text for letter references.

11

Taylor would need then to do the same for all other students, but instead
creates an object group, which is a more abstract item meant to represent
collectives of objects. To create an object group widget, Taylor first creates a
regular object widget, and then changes its type to object group (Figure 2.E).
Taylor changes the “amount” attribute and then expands the instances to au-
tomatically create the rest of the objects. These attributes above the sketch
in the widget are type attributes and are specific to the type that is selected.
Because Taylor wants all 21 student objects to share the same attributes,
Taylor connects Ally’s object to the “Students” object group (Figure 2.F),
which automatically creates attributes in any other objects belonging to the
object group. Two key features here are that the individual student widgets
can be all hidden through a button (Figure 2.G) to avoid cluttering the in-
terface (O4), and that the values of the attributes of each object can also be
filled by uploading a simple file with comma separated values, by pressing a
button in the object group widget (Figure 2.H). Having two mechanisms to
create multiple objects (a common feature in almost all constraint problems)
supports DP6 because users can build groups from all their constituents or
by defining an abstract group, or a hybrid of the two. Notice also that this
design is also compatible with DP3, since it does not require that existing
objects are connected to anything or be consistent while the model is being
built.

The crux of Taylor’s problem is distributing students into teams. A team
is best represented as container in the Solvi visual language. This is a com-
mon construct that enables modeling a large variety of constraint problems
(O1). If Taylor had to select a single team out of the class of students (e.g.,
for a regional contest), creating a single container would be su�cient, but the
problem requires multiple teams, for which Taylor must create a container
group. A widget for the container group item is created in the same way as
an object group (sketch, then switch item type) and also supports bottom-up
creation (DP6). The resulting widget (Figure 2.I) is named “Teams” and has
a sketch of a classroom table in it (teams usually work together in a table in
Taylor’s class). The widget receives a put into link from the Students object
group, which indicates that teams are made of students (DP2—Figure 2.J).
The widget also allows Taylor to specify: a) how many groups to make (5,
amount: 5); b) how many of the students have to be placed in any group (21,
capacity: 21 to 21); and, c) whether students can be in multiple groups (no,
repeated in group: false and repeated? students: false). This problem now
uses all four possible types: object, object group, container, and container

12

group. It is not possible to create any new types, but using a combination
of the four types, it is possible to model a wide variety of problems.

At this point the model will be solvable and would produce all possible
combinations of five groups between three and five students in size. This
might be su�cient in situations where there are not many solutions and
the user can simply select, by inspection, one that works (DP3). However,
problems are often combinatorially complex, requiring explicit programming
of the constraints. Here we will illustrate two ways of specifying constraints.
The first is through relationships, which has its own section on the container
widget (Figure 2.K). To make Idris and Ally be in a di↵erent team, one of
the options is to force Idris to be in Team 1, and Ally in Team 2. This can
be done by creating a contains relationship in the corresponding team that
is then connected through an equal operator to the Ally object (Figure 2.L),
and then the same for Idris in Team 2. Taylor creates the relationship by
tapping the plus button in the relationship section of the widget and then
selecting the required relationship type from the dropdown. This is a concrete
way to specify simple constraints that support bottom-up processes (DP6).
Objects can have any number of relationships, and relationships can be of
more sophisticated types. For example, relationships can specify the order or
adjacency of elements in a container (when the container is ordered—Teams
in this example are not ordered).

The second, more sophisticated, type of constraint uses a selector -repre-
sentative pair of objects. A selector essentially allows us to filter and get a
subset of elements from any object group or container group based on one
or more conditions. The representative allows the user to apply a constraint
or relationship to each of the elements selected by the selector, and works in
an identical way as a regular object or container, except it does not have a
name because it represents each of the possible selected objects or containers.
Selector and representative widgets are always created in pairs, by dragging
from the object group, container or container group. In our example, Tay-
lor uses one selector-representative pair to choose students who are not new
(i.e., attribute newness = 0), and another to operate with each of the teams
(selecting all the teams but no conditions on the selector—Figure 2.M). By
linking the representative of students who are not new to a contains relation-
ship of the representative of all teams, Taylor indicates that every team has
to contain at least one student who is not new. The selector-representative
pair of widgets could have been unified into a single widget because we did
not find any modeling situation in which they would not go together, but we

13

chose to split it into two widgets to create a more consistent parallelism with
its textual representation (DP4—see Section 5.3), and to sca↵old learning by
novice modelers, which we anticipated would best understand these as two
separate, but consecutive, functions (O4).

A final element to complete the example involves minimization. Taylor
wants to balance out the average grade on each Team, which makes sense to
give all teams a fair chance. To do this, a new attribute of a team container
(average grade) is created. Its value is calculated through the average oper-
ator, from the attribute of the grade of students in the team container itself
(Figure 2.N). This automatically propagates and creates a new attribute in
the teams container group (Figure 2.O). The “avg grade of Teams” in the
container group is then connected to the variance operator which, in turn,
is connected to the minimize operator (Figure 2.P). This e↵ectively commu-
nicates to the system that Taylor wants to minimize the variance among the
grade averages of the groups.

For completeness we highlight two additional characteristics of the Solvi
visual language and interface that are not obvious from the example above.
First, many of the items, including containers, container groups, selectors and
many relationships can be qualified with a cardinality (e.g., Figure 2.Q). This
provides additional power to represent sophisticated models. For example,
one could force the “at least one student who is not new” condition on a
limited number of teams, or a range of them (between 1 and 3), instead of
in all of them.

Second, the interface has a number of di↵erent ways to connect elements
between them, which embody the syntax of the visual language. Links are
enabled (and initiated) through ports (small circles with a symbol inside—
e.g., Figure 2.R) from which links (arrows—e.g., Figure 2.S) can be dragged
to other ports in di↵erent items. There are 6 kinds of links. Red discontin-
uous arrows represent put into links (e.g., students are put into groups—
Figure 2.T). Orange continuous arrows represent is part of links (e.g., Ally
is part of the “students” object group—Figure 2.U—and team 1, 2, 3 and 4
are each connected to the “teams” container group). In the interface, is part
of links can be compressed (and all the constituent items hidden) through a
button in the destination port (Figure 2.V) to avoid cluttering the space (O4,
DP5). Tan-colored solid arrows with square ports indicate selected by links
(Figure 2.W—essentially connections to a selector, see explanation above).
Finally, there are two types of links to connect objects and numeric values:
green arrows connect individual values or objects to attributes or operators

14

(Figure 2.Y), and yellow links contain lists of elements, usually to be ag-
gregated by operators such as average, sum, or variance (Figure 2.X). The
problem uses all the di↵erent major widget types that exist in the system.

The relatively large number of connection types is a source of complexity
for modelers, but it is a deliberate choice based on Zhu et al.’s findings [4],
who found that people use arrows and links to represent relationships of many
di↵erent types that involve more than one construct. Additionally, there is
a limited choice of visual idioms to represent this kind of connections (this
is discussed further in Section 8).

5.3. Text Pane

This pane is the main mechanism by which we support DP4. Zhu et al.
noted that people expressing constraint problems often require alternative
types of notations to express a problem [4], and problem solving in other do-
mains (e.g., physics problems [44]) often depend on accurate transformation
of verbal information into diagrams (see also [47, Chapter 2]). This pane
(shown in Figure 1.C) provides a relatively simple translation of the con-
tents in the Visual Modeling Pane to English text. The main purpose
is to allow modelers to check that what they have represented in the dia-
gram corresponds with what they intended, in a di↵erent form closer to the
problem formulations that they hold in their mind. This can help ameliorate
some of the issues of visual notations, which sometimes require memoriza-
tion of arbitrary graphical symbols and signified constructs. For example, a
novice modeler might not be very clear about the meaning of the selector-
representative constructs, but after trying them out in the visual modeling
pane, the text pane shows “In any element from all groups, it contains old
students at least 1 times”. Figure 3 shows a few of the sentences that Solvi
constructs for the English textual description of the model.

In its current version, the text pane does not allow direct input of text
that would be automatically translated in its visual form. However, there
are two features that further facilitate multi-pane interactions across the two
notations: a) when a modeler selects an item on the text pane, the visual
modeling pane highlights that item and can pan to show the object if it is
currently out of view, and b) item types, names and numeric attributes can
be changed in the text pane.

15

Figure 3: The textual specification of the problem in the text pane. A showing the

Student descriptions, B showing the Teams descriptions, and C showing description of

the constraints

5.4. Visual and textual Solutions Panes

The bottom left pane (Figure 1.B) is dedicated to visually displaying
solutions (i.e., combinations of object states that comply with the imposed
constraints—O2). Computation of solutions is activated by selecting the
Solve mode in the Command Wheel and dragging the item for which we
need the solutions from the Visual Modeling Pane. In our example, this
is the “Teams” container group, but in other problems there might be several
items that can be solved independently (DP6). This feature can be invoked
at any time (DP3).

The initial default of dragging a container or container group to the
Solution Pane will display the calculated solutions using a containment
visual idiom. Each row represents a solution, which will show the specific
sub-containers, sub-sub-containers, and so on. By default the solutions will
not display any attributes. The interface enables dragging and dropping of
specific attributes from items in theVisual Modeling Pane into theTem-
plate Solution in the visual solutions pane (a special place holder
representing a prototype of the solutions, which appears on top). This forces
every solution to display the values of that attribute.

In more concrete terms, Figure 4, left side, shows the solution pane for
our example problem. The second row, which shows the first solution (Fig-
ure 4.B) is enclosed by a grey rectangular area that contains a further rectan-
gular area for each of the teams with the team sketch (a table) which, in turn,

16

contain rectangles with the sketch of each person (e.g., Figure 4.C is Ally).
Notice that the representation of each team in the solution also indicates the
average grade (e.g., Figure 4.D). This is because Taylor dragged the “average
grade of team” from the teams containers of the visual modeling pane
into the visual solution template (Figure 4.A). The pane is scrollable
horizontally so that one can see all the components of the solution, even if
it does not fit in the current size of the pane, and vertically so that all the
available solutions are visible.

Figure 4: The solution panes for the main example. Visual on the left, text on the right.

Displaying the sketches takes a significant amount of space, but also pro-
vides the modeler a visual overview of the solution using the same symbols
(sketches) that they used for the modeling phase. This represents further
support for DP5 and might reduce ambiguity and facilitate recognition by
rendering solutions in a way that resembles an Isotype diagram [48].

The corresponding Text Solution Pane represents the solutions in
text form. Analogically to how the Text Pane supports the Visual Mod-
eling Pane, the Text Solution Pane supports disambiguation of the
solutions of the Visual Solutions Pane, but also serves as a useful out-
put format (e.g., to copy-paste into an e-mail).

5.5. Other Features
The design of the interface is completed with some necessary features

including: save/load functions, undo/redo, a system to show messages to the
user (e.g., when an invalid cycle is discovered in the created model), zooming
out of the canvas for an overview of the problem, and a way to upload bulk
attribute values to a group through a CSV file.

Finally, during the design we noticed that there are cases in which the
nested structures of container groups, containers, object groups and objects

17

can make it di�cult to assess which item an attribute belongs to (e.g., stu-
dents have a grade, but teams have collections of student grades, and the
group of teams can itself have a collection of grades, all of which could be
operated with. To address this problem we chose to label attributes with
their original items when these are inherited from contained or subgroup
types. For example, in Figure 2.Z the grade of Students attribute in the
Teams container group refers to the set of values of contained Students. This
applies also to the text-based panes.

6. Design Methodology and Implementation

The current prototype of Solvi was designed and implemented based on
previous studies of people’s understanding of constraint problem representa-
tion [4] and of the constraint problem solving process [3]. The design process
iteratively developed the Solvi language based on the objectives and design
principles, while interleaving design of visuals and interaction techniques with
implementation. This allowed us to adapt the language, the interface, and
the software infrastructure to each other, and to make sure that the gener-
ated code for the solver would be compatible with the designed behaviour. A
key technique during the process was the generation of a library of canonical
problem examples in plain English which allowed us to incrementally build
the language. When the design evolved, we could check whether previously
addressed problems were still modelable and whether the constructs designed
thus far were still necessary as well as compatible and consistent with the new
introduced elements and constructs. We also regularly checked the compat-
ibility of the design with the principles and objectives that we had selected
a priori, and informally tested the di↵erent versions of the prototypes on
ourselves and others.

The Solvi language provides an interface to the Essence [9] textual con-
straint programming language which, in turn, compiles models of the Conjure
modeling system [49] with the Athanor Local Search Solver [50]. Although
Essence was itself the product of an e↵ort to make constraint programming
more accessible, the Solvi language is far from a one-to-one translation of the
elements of Essence. A key technical challenge was generating valid Essence
from the specification and behavior of the Solvi language. The validation of
this process was done by hand and is detailed in the Supplementary Materials

18

4.
The implementation is based on a client-server architecture supported by

the Meteor.js library 5, so that heavy computing, especially the running of
the constraints solver, can be o✏oaded to a powerful server. The client side
is built on React6 and SVG.js 7. The server is implemented in Node.js 8.
The system is available to use at https://solvi.org.uk/. The source code
will be available open source on GitHub when the paper is published and is
currently included in the supplementary materials.

7. Solvi: Evaluation

In this section we evaluate Solvi. Through our evaluation we aim to
validate our design goals (Section 4), identify potential weaknesses and use
our findings as guidance for future improvements.

7.1. Evaluation Design Rationale

There are many questions about a tool such as Solvi that are best ad-
dressed through empirical evaluation methods such as observations, inter-
views, and laboratory studies. We’ve identified five central questions con-
cerning Solvi: a) is there an actual need for such kind of system; b) will such
need be recognized by potential users?; c) will people using such a system
be able to leverage its interface to address their actual needs; d) to what ex-
tent? and e) with which level of performance? Although all these questions
are relevant to most systems at some point, finding answers to some is more
relevant at certain stages of their adoption.

At this stage of Solvi’s development, questions a), b), and c) are most per-
tinent since we have found no previous work answering them in the context
of systems for solving constraint problems, and they evaluate the approach’s
potential, significance, and feasibility. Question d) addresses important is-
sues related to the coverage (power, expressiveness) of the language and
interface (e.g., what percentage of problems encountered by people can Solvi
cover?), and e) is mostly about the basic usability of the system and aspects

4
https://solvi.org.uk/Solvi-supplementary.zip

5
https://www.meteor.com/

6
https://reactjs.org/

7
https://svgjs.dev/

8
https://nodejs.org/

19

https://solvi.org.uk/
https://solvi.org.uk/Solvi-supplementary.zip
https://www.meteor.com/
https://reactjs.org/
https://svgjs.dev/
https://nodejs.org/

that would make the system more useful. Questions of type d) and e) are
important, but we consider them somewhat premature in this area. More-
over, answering these questions often demands methodologies that rely on
participant pools that do not exist today, given the limited number of people
familiar with constraint problem-solving tools.

Therefore, our evaluation centers on understanding people’s problem iden-
tification skills, the perceived value of our solutions, and their capability (af-
ter basic training) to articulate problems using the Solvi language. We opted
for a mixed-methods study. Initially, we interviewed participants about their
experiences with constraint problems. Following that, we introduced them
to a controlled environment with specific tasks, assessing their ability to un-
derstand and use the proposed system. Recognizing that prolonged sessions
might fatigue participants and compromise data quality, we designed an eval-
uation within the time constraint of two hours. This required making hard
choices on how many di↵erent problems it was reasonable to cover and how to
split the time between more open questioning of participants and the di↵er-
ent activities that they had to carry out. While various designs are possible,
the experimental design described below represents our best attempt at an-
swering the most urgent subset of questions a-d above within a reasonable
scope. More specifically, the purpose of the empirical evaluation is: 1) to val-
idate the motivation of our work (do people encounter constraint problems
that they would like to solve in a better way?); 2) to assess people’s ability to
identify and model problems (how well can people express constraint-based
problems?); 3) to assess the design of the Solvi language (to what extent
can participants express their problem in the Solvi language? Which con-
structs are hardest to understand?), and; 4) to assess the main components
of the Solvi User Interface (what UI components present problems or need
improvement? What UI components o↵ered clear benefits?).

7.2. Participants and Procedure

Our evaluation design exposed participants to the Solvi system for indi-
vidual sessions of approximately two hours per participant. We recruited 12
participants (8 female, 4 male, age 18 to 34) into two expertise groups (6
participants each): people with a Computer Science background (but with-
out explicit constraint programming expertise—the CS group), and people
without (the non-CS, or novice group). We chose to expose people with dif-
ferent expertise to Solvi to see whether lack of programming abilities would
present specific barriers to the novice group. The experimental design and

20

protocol was approved in advance by the local Research Ethics Board. Par-
ticipants received a £20 online voucher or equivalent in their local currency
as compensation for their time.

Participation was remote over the Microsoft Teams platform. Partici-
pants used their own computers, and were encouraged to use a tablet, pen
or touch device when possible. The web-based Solvi system was accessible
directly to their devices through a web URL.

After providing consent, participants underwent the experiment’s six phases
as follows: 1) introduction and constraint problem examples (video of a real-
world situation that can be modeled as a constraint problem, and description
of two example constraint problems: a knapsack filling problem9 and the wed-
ding table problem10); 2) participants reflected on constraint-based problems
of their own; 3) the experimenter demonstrated the operation and features
of Solvi (30 minutes); 4) participants used Solvi to model a wedding table
problem; 5) participants used Solvi to model one of their own problems; 6)
participants filled a NASA TLX questionnaire about the tasks, and; 7) the
experimenter conducted a semi-structured interview about the constructs of
the language and the general usability of the tool.

During phases 4 and 5 (participant using Solvi to model) the experi-
menter provided two types of guidance. If a participant did not remember
a particular feature or completed a part of the representation incorrectly,
the experimenter highlighted what they did wrong. If they still could not
progress, they received guidance on the next step to fix the mistake. The
experimenter carefully recorded how much guidance each participant needed,
which is part of the analysis. This process was necessary to ensure that all
participants reached as far as possible within the modeling process. Fur-
ther details, including the problem descriptions and example problem model
(modeled by the researchers) are in the supplementary materials.

7.3. Measurements and Analysis Methodology

The inputs to the analysis were: data from the video of the participants’
progress through modeling the problem; the final representation that par-
ticipants achieved in the system (including the level of help provided by the
experimenter); the NASA TLX questionnaire answers (a 20-point scale), and

9
https://www.csplib.org/Problems/prob133/

10
https://github.com/RishabhTyagiHub/Constraint-Satisfaction-Problem---

Wedding-Seating-Arrangement

21

https://www.csplib.org/Problems/prob133/
https://github.com/RishabhTyagiHub/Constraint-Satisfaction-Problem---Wedding-Seating-Arrangement
https://github.com/RishabhTyagiHub/Constraint-Satisfaction-Problem---Wedding-Seating-Arrangement

the semi-structured interview answers. Most of the analysis (all except the
NASA TLX) is qualitative in nature. We chose a hybrid analysis procedure.
On one side we follow a straightforward thematic analysis focused on topics
of interest determined a priori from the purposes listed at the top of this
Evaluation Section. On the other side, we wanted to discover issues, topics
and themes that we had not considered a priori, for which we carried out
a multi-pass analysis procedure reminiscent of grounded theory [51], with
three passes over the data: identification of constructs of interest, codebook
construction and coding, and topics aggregation through a�nity diagram-
ming. The NASA TLX was analyzed for di↵erences between the novice and
CS groups through a Mann-Whitney U test [52].

7.4. Results

We discuss the key results in the order of the goals listed above. Items 2
and 3 are tightly intertwined and hence discussed together.

Validation Motivation. All participants were able to provide examples of
their daily life that they thought they would benefit from if modeled and
solved computationally. Participants mentioned a variety of valid constraint
problems, from furniture arrangement to organizing COVID-safe bonfires.
Several participants highlighted in the interview the potential value to them
of finding better solutions, finding them faster, or not having to find solutions
by hand. For example, P8 said in the interview regarding the applicability
of the system to real life problems: “Yeah, for sure. And I could imagine like
I was explaining where there is like 400 something classes [being scheduled],
it would become a lot more useful.”. P9 said, “I think if there were anything
that was related to trying to organize something that has a lot of variables
or considerations, it would be useful to organize it out, both visually for
people to see where things are related to each other as well as the possible
outcomes.”

Expressing and Modeling Problems (with the Solvi language). Participants
completed between 35% and 98% of the modeling task of Phase 4 (the wed-
ding table problem) during the allocated time. Participants managed to
complete the majority of the modeling task, with around 66% of the partic-
ipants completing 70% or more of the wedding table task within the given
time. However, all participants had some guidance. A large proportion of the
required guidance was related to elements on the interface, rather than the

22

constructs of the language. Around two thirds of the participants modeled
a reasonably easy problem in Phase 5 with up to two constraints, and they
fully completed the task. The last third of the participants tried modeling a
hard problem which required the use of the selector-representative and many
constraints. However, they were not successful in finishing the problem in
the given time.

As expected, participants from the non-CS group had more di�culty
with modeling. One notable issue was the use of terminology; although we
carefully considered the nomenclature to avoid technical terms as much as
possible, Solvi still required naming the main constructs (e.g., container,
container group, attribute). Participants, especially from the non-CS group,
had di�culty remembering those terms. More generically, non-CS partici-
pants also had problems translating the problem specification to the Solvi
language, in a similar way to how novice programmers face the challenge of
computational thinking (e.g., [53]). P7 mentioned that they were “not really
used to thinking in this way”.

These intrinsic di�culties are confirmed by the analysis of the TLX data,
which shows that a majority of non-CS participants found the task men-
tally taxing and, to a lesser extent, frustrating (see Table 1). The CS group
attributed significantly less mental load to the problem, as well as less frus-
tration. This clear divide suggests that the system relies, at least at this
initial level of training, on the programming and/or logical background of
the participants. Interestingly, when modeling their own problem right af-
ter, the di↵erences between the two groups are not as marked (or statistically
significant—see Table 2). This might be because participants’ own problems
are less demanding, their choice of problem is less demanding, or because
they learned from the previous task.

As expected, some constructs were perceived as more di�cult to use, as
well as creating more trouble for the participants. The two main challenges
encountered by participants were in the selector-representative construct.
Participants 3, 4, 5, 7, and 8 were confused with how to set the relation-
ship constraint on the representative. Additionally, some participants had
misconceptions about the use of the selector. For instance, one non-CS par-
ticipant connected the attribute on the selector to the right side of an equal to
constraint on a container. 10 out of the 12 participants had issues applying
either the filter or the constraint. 6 out of the 12 participants used the quan-
tifier selector-representative incorrectly as part of the model representation.
Participants often confused the di↵erence between“exists one”, “exists” and

23

Wedding Table
Score

Mean Median p-value MWU
0-4 5-8 9-12 13-18 17-20

Mental
Non-CS 0 1 0 1 4 16.2 17.5

0.041 5.000CS 0 2 3 1 0 10.0 11.0

Physical
Non-CS 4 2 0 0 0 2.5 2.0

1.000 18.500CS 4 0 1 1 0 4.5 1.5

Temporal
Non-CS 1 1 3 1 0 8.8 10.0

0.240 10.000CS 1 4 1 0 0 5.8 5.5

Performance
Non-CS 0 0 2 2 2 14.5 14.0

0.026 4.500CS 1 2 2 1 0 8.5 8.5

E↵ort
Non-CS 0 0 2 2 2 15.3 15.5

0.065 6.500CS 0 2 1 3 0 10.7 11.5

Frustration
Non-CS 0 1 1 2 2 14.0 14.0

0.026 4.500
CS 2 2 1 1 0 6.8 7.5

Table 1: NASA TLX answers and statistical comparison of CS vs. Non-CS participants

for the wedding table modeling task. Responses are on a 20-point scale and grouped into

bins of size 4. MWU stands for Mann-Whitney U. The Mann-Whitney U test is a non-

parametric test for hypothesis testing. [52] The calculated p-value from the Mann-Whitney

U test shows the significance of the di↵erence between the Non-CS and CS cohorts. A

p-value less than 0.05 is considered significant.

Own Problem
Score

Mean Median p-value MWU
0-4 5-8 9-12 13-18 17-20

Mental
Non-CS 0 1 4 1 0 9.8 10.0

0.310 11.000CS 3 1 0 2 0 6.8 5.0

Physical
Non-CS 6 0 0 0 0 1.3 1.5

0.818 19.500CS 4 2 0 0 0 2.5 1.5

Temporal
Non-CS 1 1 2 2 0 10.0 9.5

0.132 8.500CS 2 3 0 1 0 5.7 5.0

Performance
Non-CS 3 0 2 1 0 7.0 6.5

0.818 16.500CS 1 4 1 0 0 5.7 6.0

E↵ort
Non-CS 0 2 3 1 0 9.3 9.5

0.349 12.000CS 1 3 1 1 0 7.5 7.0

Frustration
Non-CS 0 4 2 0 0 8.2 8.0

0.065 6.500
CS 2 3 1 0 0 4.8 5.0

Table 2: NASA TLX answers and statistical comparison of CS vs. Non-CS participants

for their own problem modeling task. Responses are on a 20-point scale and grouped into

bins of size 4. MWU stands for Mann-Whitney U. The Mann-Whitney U test is a non-

parametric test for hypothesis testing. [52] The calculated p-value from the Mann-Whitney

U test shows the significance of the di↵erence between the Non-CS and CS cohorts. A

p-value less than 0.05 is considered significant.

24

“all”. All 12 of the participants experienced issues with these widgets and
reported that it was their least understood part of the system.

Other issues include problems with the ordered attribute of containers
(which was necessary to model the wedding problem because it enables con-
straints such as “adjacent to”). 9 out of the 12 participants did not set
ordered to true initially on the container group. This omission meant that
people sitting around a table container did not have a sequence, and hence
missed the ability to use positional relationship constraints. This reveals
that participants did not understand the meaning of ordered, and only be-
came aware of the problem after trying and failing to locate next to in the
representative of tables widget element.

6 out of the 12 participants also confused the capacity property on the
container group and the capacity on the individual container instances. They
thought the capacity on container group was the capacity on the individual
containers as opposed to the total capacity of all the containers within the
group.

Solvi UI’s Components. As intended, the sessions uncovered multiple issues
of the interface, but also highlighted some of the perceived benefit of spe-
cific features. On the positive side, 8 participants appreciated the Object
Sketch feature, which they found fun or engaging (e.g., P7: “Because you
can draw things ... that’s quite fun for me”), and useful to understand the
representations in the UI (e.g., of the solution—P9 “I do like that when it
gives me the solution, I can see it both visually and textually.”). 3 of 12
participants also explicitly used the text pane to confirm or understand what
they had done. P1 mentioned that “So, even if I got a little bit confused ...
even if had any questions, I could just take a look here [the text pane] and
it was very detailed information.” Although we expected to observe more
use of the text panes, several participants highlighted that they focused on
the modeling first, and did not have su�cient time to check the text in the
Text Pane.

On the negative side, the Command Wheel attracted much negative
attention because it impeded participant’s ability to remember and easily
access important commands. Although this is likely a crucial issue of the
interface design, it might have been aggravated by the wheel not having any
obvious benefit to someone using the system while sitting and not on a touch-
enabled device. Another key issue is that 10 participants made mistakes in
the direction of the arrows created, and had di�culty remembering which

25

ports to use. Other problems were more circumstantial: the remote testing
platform sometimes made the interaction slow (especially on slow machines,
when the participant did have a greater delay connection to the server, and
when the number of elements on screen grew), and the testing system at the
time was occasionally slow.

Several of the issues raised by the participants were taken into account
in later iterations of the improved implementation which can be seen in the
Figures containing screenshots of the interface and the Video Figure11.

8. Discussion

The subsections below interpret the empirical results, address general
challenges of interfaces for CP, report what we learnt from the current design,
and highlight limitations of the work.

8.1. Interpretations of Empirical Evaluation Results

The results from the evaluation are mixed, but also encouraging and
useful. Participants were highly supportive of the goal and readily able to
identify situations in which they would benefit from this kind of system. This
is indicative of the potential impact of making constraint problem solving
technologies more broadly approachable.

The results show that people without computer science backgrounds can
achieve some degree of modeling, although they struggle with the most so-
phisticated constructs (e.g., the selector-representative), and with logical and
set-theory statements (e.g., all, any, exists), especially when they are com-
pounded in separate parts of the model. We believe that this reflects, for
the most part, the inherent required e↵ort, knowledge and background of
mastering mathematical, logical and programming constructs. Nevertheless,
interpreting the results in our initial study should consider the limitations
of the training (30 minutes of instruction), and the general lack of familiar-
ity of participants with formal problem expression and constraint modeling.
Participants confirmed in the interview that, after modeling, they felt more
familiar with the concepts and showed confidence that they would get better
with more use.

11
https://solvi.org.uk/Solvi.mp4

26

https://solvi.org.uk/Solvi.mp4

The data collected also points to issues in the design of the Solvi language
and interface. The simplest have already been addressed in the current ver-
sion. For example, Solvi provides on demand an alternative to the Com-
mand Wheel that sits along the left edge of the screen and does not hide
any modes or tools. There are also improvements in the general performance
of the tool and on the generation of natural language for the Text Pane,
and an additional feature that allows Solvi users to change object names and
item types from the text pane. Some other issues are more complex and
might require more radical solutions; for example, the reported di�culties
due to the multiple types of relationships between items, and hence the use
of multiple types of links could require additional UI techniques, implemen-
tation of system inferences, or a deeper rethinking of the interface.

8.2. Solvi Design Discussion

Solvi is the first visual language and tool for modeling constraint problems
for non CP experts. Problem modeling is essentially a type of declarative
programming and one of the reasons of the lack of attempts to make CP ac-
cessible might be the inherent di�culty of end-user programming. It would
be näıve to assume that an interface, regardless of how clever or carefully de-
signed, can eliminate the challenges of programming, a point already made
by Nardi in 1993 [32]. Nevertheless, end-user programming for CP seems
quite suitable to a visual interface-assisted approach such as ours because it
lacks some of the complexity of other types of programming (e.g., procedural
programming requires understanding of control flows). Moreover, recent ad-
vances on visual programming, understanding of problem specification, and
new tools and algorithms (e.g., Machine Learning-Driven Natural Language
Processing and generation such as [54, 55]) might make it worth for more
people to learn a new skill, language or interface. A UI can also become a
successful conduit to teach people about how to formalize their problems. It
might be tempting to believe that end-user programming is too di�cult and,
hence, a dead-end, but we know that there are extremely successful forms of
end-user programming, such as spreadsheets and (for a narrower audience)
tools such as MAX-MSP and Scratch [27]. We see Solvi as a step towards
this vision. It is, nonetheless, a hard problem. Modeling constraint problems
might never fit a “walk-up-and-use scenario”.

One of the most delicate parts of our process was to find a good bal-
ance between the language’s expressivity and simplicity of use. Solvi tries
to strike a balance, applying lessons learnt from Zhu et al.’s study of how

27

people graphically represent problems [4], without simplifying the range of
representative problems so much that the tool would become useless. Other
approaches are possible which might be complementary. For example, Solvi
could include a searchable library of pre-modeled problems and commonly
used constructs ready for people to adapt to their own circumstances or to
add to their models. Interestingly, this points to an additional potential
benefit of Solvi and future tools in it class: producing visual representations
of problems that are formal but also easily glanceable might help di↵erent
stakeholders communicate with each other about problems. Providing pre-
made sections of commonly used constructs that people could use as part of
their model.

A related design tradeo↵ between preciseness and familiarity of the nam-
ing of terms became also obvious. Using technical definitions of terms such
as object, class or collection simplifies linkage to general programming con-
structs but forces people to learn definitions that might overlap or interfere
with more familiar meanings of the same word. Additionally, some of these
constructs do not match the CP context exactly (e.g., object groups are simi-
lar to classes in object-oriented programming parlance, but it is not a perfect
fit). An interesting prospective solution would be to enable a kind of “term
localisation” which adapts nomenclature to the circumstances and expertise
of the user.

Our interface included several UI design innovations which we consider
secondary contributions of this work. The main one is the dual graphical-
textual interface for both specification and solution display that was derived
from Zhu et al.’s findings [4], which is also theoretically supported by prin-
ciples of multi-media instruction [56]. This element is reminiscent of coordi-
nated views [57] and brushing and linking [58]. For example, work by Zhi et.
al. [59] looked at using linking between text and visulisation to enhance sto-
rytelling. Simultaneously, some applications use visual/UI representations
and textual programming in simultaneously visible screens (e.g., Wrangler
for data cleaning and transformation [60], and Anteater for programming
and debugging with visualization [61]), but we are not aware of any visual
programming systems that o↵er parallel natural language support to make
sense of the visual semantics. Binks et al. [62] prototyped a system with
parallel natural text and visual representations or ideas, but it does not in-
volve formal specification and is meant for a very di↵erent purpose (support
argumentative essay writing). Other relevant work includes Kizil et al.’s
work [63], who investigated how formal validation of mathematics elements

28

within a mostly natural text document can be validated automatically to as-
sist the user, and Carter et al.’s work, which uses Machine Learning and NLP
techniques to interpret textual descriptions of constraint problems. These ap-
proaches are complementary to ours and could be integrated as an enhanced
way to connect the text pane with the visual modeling pane.

Other UI innovations of our system are the simultaneous visual repre-
sentation of the problem model and the solutions in coordinated and linked
manner. This includes the use of the same visual idioms in both panes, the
specification of items to solve by dragging from one pane to another, and
the use of a configurable template solution to indicate which attributes and
elements to display in the solution. We also designed an agile mechanism to
quickly reallocate screen real estate to di↵erent representations in 2 dimen-
sions simultaneously that we believe will be particularly useful for problem
specification due to the requirement that several representations appear si-
multaneously on screen, as well as a type of menu (the command wheel)
that is designed to maximize the use of multi-hand interaction while holding
a tablet. However, the value and e↵ectiveness of these two UI mechanisms
need to be validated in independent studies; in fact, the wheel showed to be
undesirable for non-tablet setups, which is why we allow to switch to a more
standard linear menu.

8.3. Limitations and Future Work

We acknowledge that the study provides only an initial evaluation of
Solvi. Section 7.1 introduced a general framework that can help plan the
next steps in the evaluation of the tool now and as it progresses through the
next stages of maturity. Specifically, next steps to evaluate the tool include:
a) an extension of the problem types tested (possibly through an additional
controlled task-oriented study); b) an in-the-wild, longitudinal study that
could assess the match of the tool with actual scenarios of use of real users
(e.g., similar to [64]); c) an in-depth usability study of the features of Solvi,
and specifically those which are novel such as the simultaneous presentation
of diagrams/text and the problem/solution spaces; d) additional studies with
specific populations such as high school learners or people without any ad-
vanced formal logical or mathematical education, to evaluate the potential
breadth of use of the tool.

There is certainly much more work to be done if we want to make constraint-
based problem solving accessible to everyone. Nevertheless, we believe that
our system and results demonstrate how one can provide a lower threshold

29

access point to CP for more people. Specifically, our approach does not re-
quire seating at a computer, installing software and learning how to compile
and execute models in textual files. Our approach might also o↵er an in-
termediate step for knowledgeable but non-formally trained users, perhaps
in the same way as spreadsheets o↵er access to data analysis and database
functionality to non-experts.

Finally, Solvi’s language and interface is quite expressive, but needs to
be extended to be able to express some types of problems that can be cur-
rently modeled with textual CP languages. These classes of problems in-
clude two-way relationships and graphical problems with two-dimensional
(or more-dimensional) data structures such as chess problems or room space
arrangements.

9. Conclusion

This paper presents the design, implementation and initial evaluation of
Solvi, a system to support modeling and solving (using existing solvers) of
constraint problems for broader audiences. We contribute the design of a
visual language that can express a wide range of problems and a support-
ing novel interface that enables visual referencing through user-generated
sketches, a dual-representation style of interaction (node and link diagram
and natural language), and simple visualization of the solutions based on
visual containment.

The results of an initial evaluation show that participants are indeed
holders of this kind of problems. Participants also achieved some degree of
success with modeling of a pre-determined problem and one of their own
problems with relatively short formal training. Having a computer science
background mattered for modeling achievement and perceived mental load of
the task. The study also highlighted the constructs that presented the most
di�culty, which include the selector-representative and the di↵erent ways in
which components of the model can relate to each other.

Acknowledgments

The authors would like to thank Daniel Zenkovitch for his input into the
Solvi application development.

Current Funding Sources List Add a Funding Source Natural Sciences
and Engineering Research Council of Canada Award Number: 2020-04401

30

— Recipient: Miguel A Nacenta Engineering and Physical Sciences Research
Council Award Number: DTG1796157 — Recipient: Xu Zhu

References

[1] R. Barták, History of Constraint Programming, in: Wiley Ency-
clopedia of Operations Research and Management Science, American
Cancer Society, 2011. doi:https://doi.org/10.1002/9780470400531.
eorms0382.

[2] C. Je↵erson, I. Miguel, B. Hnich, T. Walsh, I. P. Gent, CSPLib: A
problem library for constraints, 1999. URL: http://www.csplib.org.

[3] R. Ho↵mann, X. Zhu, Ö. Akgün, M. A. Nacenta, Understanding
How People Approach Constraint Modelling and Solving, in: C. Sol-
non (Ed.), 28th International Conference on Principles and Practice of
Constraint Programming (CP 2022), volume 235 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, Dagstuhl, Germany, 2022, pp. 28:1–28:18.
doi:10.4230/LIPIcs.CP.2022.28.

[4] X. Zhu, M. A. Nacenta, Ö. Akgün, P. Nightingale, How People Visually
Represent Discrete Constraint Problems, IEEE Transactions on Visu-
alization and Computer Graphics 26 (2020) 2603–2619. doi:10.1109/
TVCG.2019.2895085.

[5] S. Goodwin, C. Mears, T. Dwyer, M. G. de la Banda, G. Tack, M. Wal-
lace, What do Constraint Programming Users Want to See? Explor-
ing the Role of Visualisation in Profiling of Models and Search, IEEE
Transactions on Visualization and Computer Graphics 23 (2017) 281–
290. doi:10.1109/TVCG.2016.2598545.

[6] F. Rossi, P. van Beek, T. Walsh (Eds.), Handbook of Constraint Pro-
gramming, Elsevier, 2006.

[7] J.-F. Puget, Applications of constraint programming, in: Interna-
tional Conference on Principles and Practice of Constraint Program-
ming, Springer, 1995, pp. 647–650.

[8] M. Wallace, Practical applications of constraint programming, Con-
straints 1 (1996) 139–168.

31

http://dx.doi.org/https://doi.org/10.1002/9780470400531.eorms0382
http://dx.doi.org/https://doi.org/10.1002/9780470400531.eorms0382
http://www.csplib.org
http://dx.doi.org/10.4230/LIPIcs.CP.2022.28
http://dx.doi.org/10.1109/TVCG.2019.2895085
http://dx.doi.org/10.1109/TVCG.2019.2895085
http://dx.doi.org/10.1109/TVCG.2016.2598545

[9] A. M. Frisch, W. Harvey, C. Je↵erson, B. Mart́ınez-Hernández,
I. Miguel, Essence: A constraint language for specifying combinato-
rial problems, Constraints 13 (2008) 268–306. doi:10.1007/s10601-
008-9047-y.

[10] Ö. Akgün, I. Miguel, C. Je↵erson, A. M. Frisch, B. Hnich, Extensible
automated constraint modelling, in: Proceedings of theTwenty-Fifth
AAAI Conference on Artificial Intelligence, AAAI Press, 2011, pp. 4–
11.

[11] M. G. de la Banda, K. Marriott, R. Rafeh, M. Wallace, The modelling
language Zinc, in: International Conference on Principles and Practice
of Constraint Programming, Springer, 2006, pp. 700–705.

[12] M. Paltrinieri, A visual constraint-programming environment, in: Inter-
national Conference on Principles and Practice of Constraint Program-
ming, Springer, 1995, pp. 499–514.

[13] A. Bauer, V. Botea, M. Brown, M. Gray, D. Harabor, J. Slaney, An
integrated modelling, debugging, and visualisation environment for G12,
in: International Conference on Principles and Practice of Constraint
Programming, Springer, 2010, pp. 522–536.

[14] M. Carro, M. Hermenegildo, Tools for Constraint Visualisation:
The VIFID/TRIFID Tool, in: P. Deransart, M. V. Hermenegildo,
J. Ma luszynski (Eds.), Analysis and Visualization Tools for Con-
straint Programming: Constraint Debugging, Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2000, pp. 253–272. doi:10.1007/10722311_11.

[15] M. Carro, M. Hermenegildo, Tools for Search-Tree Visualisation: The
APT Tool, in: P. Deransart, M. V. Hermenegildo, J. Ma luszynski (Eds.),
Analysis and Visualization Tools for Constraint Programming: Con-
straint Debugging, Springer Berlin Heidelberg, Berlin, Heidelberg, 2000,
pp. 237–252. doi:10.1007/10722311_10.

[16] G. Dooms, P. Hentenryck, L. Michel, Model-Driven Visualizations of
Constraint-Based Local Search, Constraints 14 (2009) 294–324.

[17] H. Simonis, P. Davern, J. Feldman, D. Mehta, L. Quesada, M. Carlsson,
A Generic Visualization Platform for CP, in: D. Cohen (Ed.), Principles

32

http://dx.doi.org/10.1007/s10601-008-9047-y
http://dx.doi.org/10.1007/s10601-008-9047-y
http://dx.doi.org/10.1007/10722311_11
http://dx.doi.org/10.1007/10722311_10

and Practice of Constraint Programming – CP 2010, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2010, pp. 460–474.

[18] C. Schulte, Oz explorer: A visual constraint programming tool, in:
International Symposium on Programming Language Implementation
and Logic Programming, Springer, 1996, pp. 477–478.

[19] D. Kaiser, Physics and Feynman’s Diagrams: In the hands of a postwar
generation, a tool intended to lead quantum electrodynamics out of a
decades-long morass helped transform physics, American Scientist 93
(2005) 156–165. URL: http://www.jstor.org/stable/27858550.

[20] R. Penrose, Applications of negative dimensional tensors, Combinatorial
mathematics and its applications 1 (1971) 221–244.

[21] B. Tversky, What do sketches say about thinking, in: 2002 AAAI
Spring Symposium, Sketch Understanding Workshop, Stanford Univer-
sity, AAAI Technical Report SS-02-08, 2002, pp. 148–151.

[22] J. Walny, S. Huron, S. Carpendale, An Exploratory Study of Data
Sketching for Visual Representation, Computer Graphics Forum 34
(2015) 231–240. doi:10.1111/cgf.12635.

[23] Z. Liu, J. T. Stasko, Mental models, visual reasoning and interaction
in information visualization: A top-down perspective, IEEE Trans-
actions on Visualization & Computer Graphics 16 (2010) 999–1008.
doi:10.1109/tvcg.2010.177.

[24] A. Kohnle, G. Passante, Characterizing representational learning: A
combined simulation and tutorial on perturbation theory, Physical Re-
view Physics Education Research 13 (2017) 20131.

[25] D. Gentner, A. L. Stevens, Mental models, Psychology Press, 1983.
doi:10.4324/9781315802725.

[26] A. W. Crapo, L. B. Waisel, W. A. Wallace, T. R. Willemain, Visu-
alization and the Process of Modeling: A Cognitive-Theoretic View,
in: Proceedings of the Sixth ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, KDD ’00, Associa-
tion for Computing Machinery, New York, NY, USA, 2000, p. 218–226.
doi:10.1145/347090.347129.

33

http://www.jstor.org/stable/27858550
http://dx.doi.org/10.1111/cgf.12635
http://dx.doi.org/10.1109/tvcg.2010.177
http://dx.doi.org/10.4324/9781315802725
http://dx.doi.org/10.1145/347090.347129

[27] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond,
K. Brennan, A. Millner, E. Rosenbaum, J. a. Y. Silver, B. Silverman,
Y. Kafai, Scratch: Programming for All, Commun. ACM 52 (2009)
60–67. doi:10.1145/1592761.1592779.

[28] D. J. Rough, A. J. Quigley, Jeeves-an Experience Sampling study cre-
ation tool, BCS Health Informatics Scotland (HIS) (2017).

[29] G. G. Méndez, M. A. Nacenta, S. Vandenheste, iVoLVER: Interactive
visual language for visualization extraction and reconstruction, Pro-
ceedings of the 2016 CHI Conference on Human Factors in Computing
Systems - CHI ’16 (2016) 4073–4085. doi:10.1145/2858036.2858435.

[30] J. Maloney, M. Resnick, N. Rusk, B. Silverman, E. Eastmond, The
scratch programming language and environment, ACM Transactions on
Computing Education (TOCE) 10 (2010) 1–15.

[31] M. M. Burnett, M. J. Baker, C. Bohus, P. Carlson, S. Yang, P. V. Zee,
Scaling up visual programming languages, Computer 28 (1995) 45–54.
doi:10.1109/2.366157.

[32] B. A. Nardi, A Small Matter of Programming: Perspectives on End User
Computing, 1st ed., MIT Press, Cambridge, MA, USA, 1993.

[33] K. Marriott, B. Meyer, Visual language theory, Springer-Verlag New
York, Inc., New York, NY, USA, 1998.

[34] N. Beldiceanu, H. Simonis, A Constraint Seeker: Finding and Ranking
Global Constraints from Examples, in: J. Lee (Ed.), Principles and
Practice of Constraint Programming – CP 2011, Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2011, pp. 12–26.

[35] N. Beldiceanu, H. Simonis, A Model Seeker: Extracting Global Con-
straint Models from Positive Examples, in: M. Milano (Ed.), Principles
and Practice of Constraint Programming, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2012, pp. 141–157.

[36] N. Beldiceanu, G. Ifrim, A. Lenoir, H. Simonis, Describing and Gener-
ating Solutions for the EDF Unit Commitment Problem with the Mod-
elSeeker, in: C. Schulte (Ed.), Principles and Practice of Constraint

34

http://dx.doi.org/10.1145/1592761.1592779
http://dx.doi.org/10.1145/2858036.2858435
http://dx.doi.org/10.1109/2.366157

Programming, Springer Berlin Heidelberg, Berlin, Heidelberg, 2013, pp.
733–748.

[37] G. Fedyukovich, A. Gupta, Functional Synthesis with Examples, in:
T. Schiex, S. de Givry (Eds.), Principles and Practice of Constraint
Programming, Springer International Publishing, Cham, 2019, pp. 547–
564.

[38] R. E. Horn, Visual language: Global Communication for the 21st Cen-
tury, MacroVu Inc. Washington (1998).

[39] E. R. Tufte, The Visual Display of Quantitative Information, Cheshire,
Conn. : Graphics Press, 2001. URL: http://archive.org/details/
visualdisplayofq00tuft.

[40] B. A. Myers, Taxonomies of visual programming and program visual-
ization, Journal of Visual Languages & Computing 1 (1990) 97–123.
doi:10.1016/S1045-926X(05)80036-9.

[41] G. G. Méndez, U. Hinrichs, M. A. Nacenta, Bottom-up vs. Top-
down: Trade-o↵s in e�ciency, understanding, freedom and creativity
with infovis tools, in: Conference on Human Factors in Comput-
ing Systems - Proceedings, volume 2017-May of CHI ’17, Association
for Computing Machinery, New York, NY, USA, 2017, pp. 841–852.
doi:10.1145/3025453.3025942.

[42] J. Piaget, M. Cook, The Origins of Intelligence in Children, volume 8,
International Universities Press New York, 1952.

[43] S. Papert, Mindstorms: Children, Computers, and Powerful Ideas, Basic
Books, Inc., USA, 1980.

[44] J. Larkin, J. McDermott, D. P. Simon, H. A. Simon, Expert and Novice
Performance in Solving Physics Problems, Science 208 (1980) 1335–
1342. doi:10.1126/science.208.4450.1335.

[45] M.-A. D. Storey, F. D. Fracchia, H. A. Müller, Customizing a Fisheye
View Algorithm to Preserve the Mental Map, Journal of Visual Lan-
guages & Computing 10 (1999) 245–267. doi:10.1006/jvlc.1999.0124.

35

http://archive.org/details/visualdisplayofq00tuft
http://archive.org/details/visualdisplayofq00tuft
http://dx.doi.org/10.1016/S1045-926X(05)80036-9
http://dx.doi.org/10.1145/3025453.3025942
http://dx.doi.org/10.1126/science.208.4450.1335
http://dx.doi.org/10.1006/jvlc.1999.0124

[46] A. F. Blackwell, C. Britton, A. Cox, T. R. G. Green, C. Gurr,
G. Kadoda, M. S. Kutar, M. Loomes, C. L. Nehaniv, M. Petre, others,
Cognitive dimensions of notations: Design tools for cognitive technol-
ogy, in: International Conference on Cognitive Technology, Springer,
2001, pp. 325–341.

[47] S. I. Robertson, Problem Solving: Perspectives from Cognition
and Neuroscience (1st ed.), Psychology Press, 2001. doi:10.4324/
9780203457955.

[48] M. Neurath, Isotype, Instructional Science 3 (1974) 127–150. URL:
http://www.jstor.org/stable/23368119.

[49] Ö. Akgün, I. Miguel, C. Je↵erson, A. M. Frisch, B. Hnich, Extensi-
ble Automated Constraint Modelling, in: W. Burgard, D. Roth (Eds.),
AAAI 2011 - Proceedings of the Twenty-Fifth AAAI Conference on Ar-
tificial Intelligence, AAAI 2011, San Francisco, California, USA, August
7-11, 2011, AAAI Press, 2011.

[50] S. Attieh, N. Dang, C. Je↵erson, I. Miguel, P. Nightingale, Athanor:
High-Level Local Search Over Abstract Constraint Specifications in
Essence, in: Proceedings of the Twenty-Eighth International Joint Con-
ference on Artificial Intelligence, {IJCAI-19}, International Joint Con-
ferences on Artificial Intelligence Organization, 2019, pp. 1056–1063.
doi:10.24963/ijcai.2019/148.

[51] D. LIncoln, N. K. Denzin, Y. S. Lincoln, The SAGE Handbook of Qual-
itative Research, Sage Publications, 2005.

[52] P. E. McKnight, J. Najab, Mann-Whitney U Test, in: The Corsini
Encyclopedia of Psychology, American Cancer Society, 2010, p. 1.
doi:https://doi.org/10.1002/9780470479216.corpsy0524.

[53] A. Robins, J. Rountree, N. Rountree, Learning and Teaching Program-
ming: A Review and Discussion, Computer Science Education 13 (2003)
137–172. doi:10.1076/csed.13.2.137.14200.

[54] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-
Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler,

36

http://dx.doi.org/10.4324/9780203457955
http://dx.doi.org/10.4324/9780203457955
http://www.jstor.org/stable/23368119
http://dx.doi.org/10.24963/ijcai.2019/148
http://dx.doi.org/https://doi.org/10.1002/9780470479216.corpsy0524
http://dx.doi.org/10.1076/csed.13.2.137.14200

J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,
B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever,
D. Amodei, Language Models are Few-Shot Learners, ArXiv abs/2005.1
(2020).

[55] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. Ponde, J. Kaplan, H. Ed-
wards, Y. Burda, N. Joseph, G. Brockman, A. Ray, R. Puri, G. Krueger,
M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin, B. Chan, S. Gray,
N. Ryder, M. Pavlov, A. Power, L. Kaiser, M. Bavarian, C. Winter,
P. Tillet, F. Such, D. Cummings, M. Plappert, F. Chantzis, E. Barnes,
A. Herbert-Voss, W. H. Guss, A. Nichol, I. Babuschkin, S. Balaji,
S. Jain, A. Carr, J. Leike, J. Achiam, V. Misra, E. Morikawa, A. Radford,
M. Knight, M. Brundage, M. Murati, K. Mayer, P. Welinder, B. Mc-
Grew, D. Amodei, S. McCandlish, I. Sutskever, W. Zaremba, Evaluating
Large Language Models Trained on Code, ArXiv abs/2107.0 (2021).

[56] R. Moreno, R. E. Mayer, Cognitive principles of multimedia learning:
The role of modality and contiguity., Journal of Educational Psychology
91 (1999) 358–368. doi:10.1037/0022-0663.91.2.358.

[57] J. C. Roberts, State of the art: Coordinated & multiple views in ex-
ploratory visualization, in: Fifth International Conference on Coordi-
nated and Multiple Views in Exploratory Visualization (CMV 2007),
2007, pp. 61–71. doi:10.1109/CMV.2007.20.

[58] A. Buja, J. A. McDonald, J. Michalak, W. Stuetzle, Interactive data
visualization using focusing and linking, in: Proceeding Visualization
’91, 1991, pp. 156–163. doi:10.1109/VISUAL.1991.175794.

[59] Q. Zhi, A. Ottley, R. Metoyer, Linking and layout: Exploring the in-
tegration of text and visualization in storytelling, Computer Graphics
Forum 38 (2019) 675–685. doi:https://doi.org/10.1111/cgf.13719.

[60] S. Kandel, A. Paepcke, J. Hellerstein, J. Heer, Wrangler: Interactive
visual specification of data transformation scripts, in: Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, CHI
’11, Association for Computing Machinery, New York, NY, USA, 2011,
p. 3363–3372. doi:10.1145/1978942.1979444.

37

http://dx.doi.org/10.1037/0022-0663.91.2.358
http://dx.doi.org/10.1109/CMV.2007.20
http://dx.doi.org/10.1109/VISUAL.1991.175794
http://dx.doi.org/https://doi.org/10.1111/cgf.13719
http://dx.doi.org/10.1145/1978942.1979444

[61] R. Faust, K. Isaacs, W. Z. Bernstein, M. Sharp, C. Scheideg-
ger, Anteater: Interactive visualization for program understanding,
CoRR abs/1907.02872 (2019). URL: http://arxiv.org/abs/1907.
02872. arXiv:1907.02872.

[62] A. Binks, A. Toniolo, M. A. Nacenta, Representational transformations:
Using maps to write essays, International Journal of Human-Computer
Studies 165 (2022) 102851. doi:https://doi.org/10.1016/j.ijhcs.
2022.102851.

[63] Z. Kiziltan, M. Lippi, P. Torroni, Constraint Detection in Natural Lan-
guage Problem Descriptions., in: IJCAI, 2016, pp. 744–750.

[64] A. J. Parkes, H. S. Ra✏e, H. Ishii, Topobo in the wild: Longitudinal
evaluations of educators appropriating a tangible interface, in: Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’08, Association for Computing Machinery, New York,
NY, USA, 2008, p. 1129–1138. doi:10.1145/1357054.1357232.

38

http://arxiv.org/abs/1907.02872
http://arxiv.org/abs/1907.02872
http://arxiv.org/abs/1907.02872
http://dx.doi.org/https://doi.org/10.1016/j.ijhcs.2022.102851
http://dx.doi.org/https://doi.org/10.1016/j.ijhcs.2022.102851
http://dx.doi.org/10.1145/1357054.1357232

Graphical Abstract

Solvi: a Visual Constraint Modeling Tool

Xu Zhu, Miguel A Nacenta, Özgür Akgün, Daniel Zenkovitch

How does a
teacher put
students into
groups while
balancing student
maturity, avoiding
student conflicts,
and ensuring the
difference in the
average grade of
each group are
minimised?

Solvi uses visual diagramming, visualization, sketching and natural language
with the goal to make constraint solving (model-based AI technology) more

accessible to more people

People meet discrete
constraint problems all the
time in their personal and
professional lives

Language Elements:
Object, Object Group, Container, Container Group,
Selector-Representative, Operators, Links • People formulated a

variety of problems
• Achieved some success

modelling
• Selector-Representative

challenging for people

• What constraint
problems do
people meet in
their life?

• To what extent
can people
model using
Solvi?

• What concepts
are difficult for
people to
understand?

Solvi helps with modelling for problem solvers

Visual
Modelling

Text
Modelling

Visual
Solution

Text
Solution

Evaluation: Users modelled given problems
and own problem

Highlights

Solvi: a Visual Constraint Modeling Tool

Xu Zhu, Miguel A Nacenta, Özgür Akgün, Daniel Zenkovitch

• We contributed a language and tool (Solvi) that leverage knowledge of
how non-experts conceptualize problems to facilitate the expression of
constraint models.

• We conducted a quantitative user study using Solvi that surveyed the
advantages of the tool and remaining challenges towards making con-
straint problem modelling accessible to the wider public.

	Introduction
	Example Problem
	Background and Related Work
	Design Goals and Principles
	Solvi: Design
	General Structure
	Visual Modeling Pane and Solvi Visual Language
	Text Pane
	Visual and textual Solutions Panes
	Other Features

	Design Methodology and Implementation
	Solvi: Evaluation
	Evaluation Design Rationale
	Participants and Procedure
	Measurements and Analysis Methodology
	Results

	Discussion
	Interpretations of Empirical Evaluation Results
	Solvi Design Discussion
	Limitations and Future Work

	Conclusion

